

ICE-600 Installation and Operation Manual

Version: 1

Last Edited: 1/09/2025

InCharge Energy Inc.

All Rights Reserves. This Manual May Be Subject to Change Without Notice

https://inchargeus.com/

Service Hotline: 818-697-GOEV

Contents

1.) IMP(DRTANT SAFETY INSTRUCTIONS5				
1.1)	Electrical Safety5				
1.2)	Tools				
1.3)	Thunderstorm				
1.4)	Static Electricity				
1.5)	Short Circuit 6				
1.6)	Sharp Corners of Objects 6				
1.7)	Power Cable 6				
1.8)	Signal Cables7				
2.) Gene	eral Product Description8				
2.1) N	Nain Features				
3.) Gene	eral Characteristics9				
3.1) T	echnical Characteristics				
3.2) N	Nodel Description				
3.3) S	tandards				
4.) Prod	uct Parts Presentation				
5.) Insta	llation21				
5.1) S	afety and Compliance				
5.2) 0	irounding Instructions				
5.3) L	Inboxing and Visual Inspection 21				
5.4) A	ssembly/Placing Instructions				
5.4	.1) Preparation of Concrete Foundation				
5.4	.2) Power Cabinet and Dispenser Installation 25				
5.4	.3) Power and Signal Cable Connections				
5.4	5.4.4) Power Module Installation				
5.5) C	5.5) Controller Setting				
5.5	.1) Address Settings				
5.5	.2) Resistance Setting				
6.) Ac	lding Cooling Liquid				
6.1) Charging Dispenser Cold Source Description45				
6.2) L	iquid Cooled Cable System				

6.3) Adding Liquid Step	46
7.) Start Up	48
7.1) Verification and Inspection	48
7.2) Switch On	48
8.) Important Parameter Settings	51
8.1) Dispenser Parameter Setup	51
8.2 Power Cabinet Parameter Setup	55
8.3) Reset and Test	61
8.3.1) System Self Check	61
9.) Description of Relevant Parameters	62
10.) Power Distribution Strategy	64
10.1) Introduction to Power Nodes	64
10.2) Scenario 1: Increasing Charging Power	65
10.3) Scenario 2: Decreasing Charging Power	65
10.4) Scenario 3: Charging Initiated at Node Along the Power Path	68
11.) User Operation	70
11.1) Output Connector	70
11.1) Output Connector	70 70
11.1) Output Connector11.1.1) CCS1 and NACS Connector11.2) Operation Instructions	70 70 71
 11.1) Output Connector 11.1.1) CCS1 and NACS Connector 11.2) Operation Instructions	70 70 71 74
 11.1) Output Connector	70 70 71 74 74
 11.1) Output Connector	70 70 71 74 74 74
 11.1) Output Connector. 11.1.1) CCS1 and NACS Connector. 11.2) Operation Instructions 11.3) Ethernet and OCCP Setting 11.3.1) Connection Check 11.4) Network Setting 11.4.1) Router Set Up. 	70 70 71 74 74 74 74
 11.1) Output Connector 11.1.1) CCS1 and NACS Connector 11.2) Operation Instructions 11.3) Ethernet and OCCP Setting 11.3.1) Connection Check 11.4) Network Setting 11.4.1) Router Set Up 11.4.2) Wireless Network Configuration 	70 70 71 74 74 74 74 74
 11.1) Output Connector 11.1.1) CCS1 and NACS Connector 11.2) Operation Instructions 11.3) Ethernet and OCCP Setting 11.3.1) Connection Check 11.4) Network Setting 11.4.1) Router Set Up 11.4.2) Wireless Network Configuration 11.4.3) Wired Network Configuration 	70 70 71 74 74 74 77 77
 11.1) Output Connector	70 70 71 74 74 74 74 77 77 77
 11.1) Output Connector	70 70 71 74 74 74 74 77 77 77 77
 11.1) Output Connector 11.1) CCS1 and NACS Connector 11.2) Operation Instructions 11.3) Ethernet and OCCP Setting 11.3.1) Connection Check 11.4) Network Setting 11.4.1) Router Set Up 11.4.2) Wireless Network Configuration 11.4.3) Wired Network Configuration 11.5) Charger Software Update 11.5.1) Upper Controller Update 11.5.2) Pilot Controller Update 	70 70 71 74 74 74 74 77 77 77 77 77
 11.1) Output Connector	70 70 71 74 74 74 74 74 77 77 77 77 79 80
 11.1) Output Connector	70 70 71 74 74 74 74 74 77 77 77 77 79 80 83
 11.1) Output Connector	70 70 71 74 74 74 74 74 77 77 77 77 79 80 83 87

1.) Maintenance Table	 	 89)
2.) Maintenance Operation	 	 89)
2.1) AC Input Main Breaker 89	 	 89)
2.2) Devices and Connection Points)
2.3) AC SPD	 	 	3
2.4) Charging Plug	 	 	3
2.5 Cooling Fan and Filter Cotton	 	 	3
2.6) ESD	 	 	ł
2.7) Alarm Information	 	 	5
Appendix 5) Error Codes and Possible Solutions96	 	 96	5
Appendix 6) Torque Table105	 	 	5

1.) IMPORTANT SAFETY INSTRUCTIONS

- Please read the operating instructions and notes carefully before starting operation to prevent accidents. The "Caution, Attention, Warning, and Danger" statements in the products and product manual do not represent all safety matters to be observed and are intended to supplement various operational safety precautions.
- During the various operations of our products and equipment, it is necessary to comply with the relevant National Safety Regulations and strictly observe the precautions and special safety instructions for the relevant equipment provided by InCharge Energy.
- Any usage of water on the charger during a charge session or during idling is a safety hazard and prohibited.

1.1) Electrical Safety

ADanger

Since some parts of this power system are under high voltage during operation, direct or indirect contact can be fatal.

- It is necessary to comply with the relevant National Safety Regulations during the installation of the Portable DC Charger. Personnel who install and maintain this equipment must be qualified to work with high DC voltage up to 1000Vdc and 3-phase AC voltage up to 500Vac.
- It is strictly forbidden to wear watches, bracelets, bangles, rings and other conductive objects on the wrist during installation and maintenance.
- If there is water inside the DC Charger enclosure, AC power and DC connector must be disconnected immediately. During operation in a humid environment, water should be strictly prevented from entering the equipment.
- During installation, it is strictly forbidden to operate the DC Charger and an "Operation prohibited" signboard must be used.

Danger	Construction operation of high voltage lines may cause fire or electric shock. The wiring area and the area where the line passes through for AC cables must comply with national and local regulations and norms. As this device utilizes high voltages do not attempt to install this
	equipment if you are not a qualified electrician.

1.2) Tools

	Special tools must be used during various operations involving high DC
Warning	and AC voltages.

1.3) Thunderstorm

It is strictly forbidden to carry out live installation and maintenance work during thunderstorms.

 A strong electromagnetic field will be produced in the atmosphere during a thunderstorm. Therefore, the equipment should be well grounded to avoid damage to the equipment due to lightning strikes.

1.4) Static Electricity

	Static electricity generated by the human body may damage
	electrostatic sensitive components on the circuit boards, such as the
	large-scale integrated circuit (IC), etc. Before handling any patch
	boards, circuit boards and IC chips, it is necessary to wear an anti-
ESD Caution	static wrist strap with the anti-static wrist strap wire connected to
	Ground to avoid damage to sensitive components due to static
	electricity.

1.5) Short Circuit

	During operation, it is strictly forbidden to short-circuit the positive
^	and negative of the DC Charger DC distribution or short-circuit any DC
Danger	distribution polarity to Ground. The DC Charger is a high voltage DC
Danger	power supply, and short circuit may cause damage to the DC Charger
	and personal safety hazards.

- During work with High Voltage DC output, it is necessary to strictly check the polarity of cables and interface terminals.
- The space for DC power distribution work is compact and attention should be paid to planning cable routing etc. before starting any installation work.
- Insulated tools must be used.
- During live work, attention should be paid to keeping hands, arms tools etc. away from live high voltage parts to avoid accidents.

1.6) Sharp Corners of Objects

	During the handling of equipment by hand, it is necessary to wear
Warning	protective gloves to prevent injuries caused by sharp objects.

1.7) Power Cable

\bigwedge	Make sure that the cable label is correct before the connection of cables.
Caution	

1.8) Signal Cables

Signal cables should be kept away from power cables, with a minimum distance of 100mm.

2.) General Product Description

The ICE-600 Split type-high power charger is specially designed for the Operator split and multi-EV charging point application with CCS/CHAdeMO/NACS standard. The Max output is 1000V/600kW when utilizing the 500A liquid cooled cable, and each Liquid Cooled charging connector can get max 600kW power.

The following ICE-600 split system consists of one 600KW Power Cabinet (ten channels output) and five Slim Line dispenser or ten Micro-Dispensers, including standard connector 125A(CHAdeMO)/200A(CCS&NACS)/300A(CCS&NACS) and liquid-cooled connector 500A(CCS&NACS).

2.1) Main Features

- The ICE-600 can fast charge all electric vehicles compliant with combined charging system (CCS) standards.
- IP55 for the Slim Line Dispenser, IP65 for the Micro Dispenser, and IP54 for the Power Cabinet with high protection and high reliability for harsh environment, -22°F ~ 122°F (-30°C~50°C) ambient temperature full power charging.
- Easily configure the output power up to 600kW and the output voltage up to 1000V.
- The battery charging state is displayed on the HMI and the charging cycle finishes by itself or can be interrupted by user command.
- The ICE-600 is user-friendly and safe. After user identification, it only requires coupling the charger's output plug in the EV for automatic starting if all safety features are accomplished.
- Full safety function with output contactor and fuse, ESD, SPD, leakage switch, insulation detector, and software logic for multiple protection.
- LAN and LTE wireless support, RFID authorization and Mobile App payment support.
- Optional CCS standard 500A liquid cooling charging connector in the Slim Line Dispenser
- Power transfer between the 4 dispensers with each 8 connectors to improve the charging operation efficiency.
- User friendly interface with tempered glass protective 7" TFT capacitive touch screen LCD for all Slim-Line Dispensers.

3.) General Characteristics

3.1) Technical Characteristics

The ICE-600 Split Power Cabinet and Dispenser technical characteristics are indicated in Table 3-1, Table 3-2, Table 3-3, Table 3-4, and Table 3-5. "N" means Natural cooling, "L" means Liquid cooling. The following is omitted:

Technical Data		Description	Remarks		
	Phases/Lines	3 phases + P E (L1, L2, L3, + PE)WYE			
	Voltage	480/277 Vac (+/-10%)			
	Frequency	60Hz			
Nominal Input	Current	2*380A			
Nominal Input	Power	600kW			
	Power factor	≥0.99			
	System efficiency	≥ 94.5% (Full load)			
	Max power	600kW 300~1000V			
	Voltage range	150 ~ 1000Vdc			
DC Output	Current	10 outputs:			
	Current	Each output Max 500A			
	Dispenser support	5 dispensers / 10 charging connectors connection			
Auxiliary power	Voltage	480Vac			
Output	Current	10A			
	Dimensions(W*D*H)	41.33 x 45.28 x 86.62 (in) [1050×1150×2200 (mm)]			
Cabinet	Weight	1587 lbs (720 kg) (excluding power module, power module is 34lbs (15.5kg.))			
	Protection Degree	NEMA 3R/IP54			
Networking method	Communication	Router 4G/5G (GSM, CDMA or LTE)			
	Operating temperature ¹	-13°F ~ +122°F (-25°C ~ +50°C)			
	Transportation/storage	-40°F ~ +158°F (-40°C ~ +70°C)			
	humidity	5%RH ~ 95%RH			
	Place of installation	Indoor / Outdoor			
	Altitude	6561 ft (2000m)			
Environmental	Sound Noico	≤65dB (nominal input/output power, the environment			
conditions	Souria Noise	temperature is 77°F / 25°C.)			
	Atmospheric pressure	80KPa ~ 110Kpa (11.6 psi – 16.0 psi)			
	AC Input Overvoltage category	II			
	DC Output Overvoltage category	Ι			
	Protection class	Class I			
Note 1: The C	Note 1: The Charging Dispenser provides full output power up to 122°F (50°C), output power derating 5% / °C above 122°F (50°C).				

Table 3-1: Power Cabinet (IDC600K3-FMR5) Technical Characteristics

Technical Data		Description	Remarks
	Phases/Lines	(DC1+, DC1-) + (DC2+, DC2-) + PE	
	Voltage Range	Max 1000Vdc	
Nominal Input	Current	500A, 200A	
Normaniput	Power	500kW, 200kW	
	System Efficiency	≥ 99% (Full load)	
DC Quitaut	Voltage	150 ~ 1000Vdc	
DCOulpul	Current	500A(L)	
CCS1(L)	Nominal Power	500kW	
DC Output	Voltage	150 ~ 1000Vdc	
DCOutput	Current	200A(N),	
CCS1	Nominal power	200kW	
Auxiliary Power	Voltage	480Vac	
Input	Current	1.2A	
	Dimensions(W*D*H)	19.7*10.23*70.86 in (500*260*1800 (mm))	
Cabinet	Weight	430 lbs. (195kg)	
	Protection Degree	IP55	
	Local Interface	TFT Color touch display 7"	
HMI and	Communication	CAN, LAN	
Command	Protocol	OCPP1.6 specification	
Unit			
	Operating Temperature ¹	-13°F ~ +122°F (-25°C ~ +50°C)	
	Transportation/Storage	-40°E ~ +158°E (-40°C ~ +70°C)	
	Temperature		
	Humidity	5%RH ~ 95%RH	
	Place of Installation	Indoor / Outdoor <mark>2</mark>	
Environmental	Altitude	6561.7 ft (2000m)	
Conditions	Sound Noise	≤60dB (nominal input/output power, the environment	
		temperature is 77°F / 25°C.)	
	Atmospheric Pressure	80KPa ~ 110Kpa (11.6 psi – 16.0 psi)	
	Overvoltage Category	11	
	Protection Class	Class I	
Note 1: The Cha	arging Dispenser provides fu	Il output power up to 122°F (50°C), output power derating 5% (50°C).	/ °C above 122°F
Note 2: The protection degree of the Charging Dispenser is IP55. But for charging safety it should not be used during rain or snow if water can reach the charger connector.			

Table 3-2: Slim Line Dispenser (IDC500-LCD-UU2) Technical Characteristics

Technical Data		Description	Remarks
	Phases/Lines	(DC1+, DC1-) +(DC2+, DC2-) + PE	
	Voltage Range	Max 1000Vdc	
Nominal Input	Current	300A	
	Power	300kW	
	System Efficiency	≥ 99% (Full load)	
DC Output	Voltage	150 ~ 1000Vdc	
	Current	300A	
CCSI	Nominal Power	300kW	
Auxiliary Power	Voltage	480Vdc	
Input	Current	0.6A	
	Dimensions(W*D*H)	19.7*10.23*70.86 in (500*260*1800 (mm))	
Cabinet	Weight	407.9 lbs. (185kg)	
	Protection Degree	IP55	
	Local Interface	TFT Color touch display 7"	
HMI and	Communication	CAN, LAN	
Command Unit	Protocol	OCPP1.6 specification	
	Operating Temperature ¹	-13°F ~ +122°F (-25°C~+50°C)	
	Transportation/Storage Temperature	-40°F ~ +158°F (-40°C~+70°C)	
	humidity	5%RH ~ 95%RH	
	Place of Installation	Indoor / Outdoor ²	
Environmental	Altitude	6561.7 ft (2000m)	
Conditions	Sound Noise	≤60dB (nominal input/output power, the environment temperature is 77°F / 25°C.)	
	Atmospheric Pressure	80KPa ~ 110Kpa (11.6 psi – 16.0 psi)	
	Overvoltage Category	II	
	Protection Class	Class I	
Note 1: The Cha	arging Dispenser provides fu	ull output power up to 122°F (50°C), output power derating 5% (50°C).	/°C above 122°F
Note 2: The prote	ection degree of the Chargi snow	ng Dispenser is IP55. But for charging safety it should not be us if water can reach the charger connector.	ed during rain or

Table 3-3: Slim Line Dispenser (IDC300-FDC-UU2) Technical Characteristics

Technical Data		Description	Remarks
	Phases/Lines	(DC1+, DC1-) + (DC2+, DC2-) + PE	
	Voltage Range	Max 1000Vdc	
Nominal Input	Current	200A	
	Power	200kW	
	System Efficiency	≥ 99% (Full load)	
DC Output	Voltage	150~1000Vdc	
CCS1	Current	200A	
	Nominal Power	200kW	
Auxiliary Power	Voltage	480Vdc	
Input	Current	0.6A	
	Dimensions(W*D*H)	19.7*10.23*70.86 in (500*260*1800 (mm))	
Cabinet	Weight	407.85 lbs. (185kg)	
	Protection Degree	IP55	
	Local Interface	TFT Color touch display 7"	
HMI and	Communication	CAN, LAN	
Command Unit	Protocol	OCPP1.6 specification	
	Operating Temperature ¹	-13°F ~ +122°F (-25°C ~ +50°C)	
	Transportation/Storage Temperature	-40°F ~ +185°F (-40°C ~ +70°C)	
	humidity	5%RH ~ 95%RH	
	Place of Installation	Indoor / Outdoor <mark>2</mark>	
Environmental	Altitude	6561.68 ft (2000m)	
Conditions	Sound Noise	≤60dB (nominal input/output power, the environment temperature is (77 F) 25°C.)	
	Atmospheric Pressure	80KPa ~ 110Kpa (11.6 psi – 16.0 psi)	
	Overvoltage Category	II	
	Protection Class	Class I	
Note 1: The Cha	irging Dispenser provides fu	ll output power up to 122°F (50°C), output power derating 5% (50°C).	/°C above 122°F
Note 2: The prot	ection degree of the Chargi snow	ng Dispenser is IP55. But for charging safety it should not be us if water can reach the charger connector.	ed during rain or

Table 3-4: Slim Line Dispenser (IDC200-FDC-UU2) Technical Characteristics

Technical Data		Description	Remarks
	Phases/Lines	(DC1+, DC1-) +(DC2+, DC2-) + PE	
	Voltage Range	Max 1000Vdc ,500Vdc	
Nominal Input	Current	200A, 125A	
	Power	200kW ,62.5kW	
	System Efficiency	≥ 99% (Full load)	
DC Output	Voltage	150 ~ 1000Vdc	
	Current	200A	
CCS1	Nominal Power	200kW	
	Voltage	150 ~ 500Vdc	
	Current	125A	
CHAdeMO	Nominal Power	62.5kW	
Auxiliary Power	Voltage	480Vdc	
Input	Current	0.6A	
Cabinet	Dimensions(W*D*H)	19.7*10.23*70.86 in (500*260*1800 (mm))	
	Weight	407.85 lbs. (185kg)	
	Protection Degree	IP55	
	Local Interface	TFT Color touch display 7"	
HMI and	Communication	CAN, LAN	
Command Unit	Protocol	OCPP1.6 specification	
	Operating Temperature ¹	-13°F ~ +122°F (-25°C ~ +50°C)	
	Transportation/Storage Temperature	-40°F ~ +185°F (-40°C ~ +70°C)	
	humidity	5%RH ~ 95%RH	
	Place of Installation	Indoor / Outdoor ²	
Environmental	Altitude	6561.68 ft (2000m)	
Conditions	Sound Noise	≤60dB (nominal input/output power, the environment temperature is 77° (25°C)).	
	Atmospheric Pressure	80KPa ~ 110Kpa (11.6 psi – 16.0 psi)	
	Overvoltage Category	II	
	Protection Class	Class I	
Note 1: The Cha	arging Dispenser provides fu	ull output power up to 122 F (50°C), output power derating 5% (50°C).	/°C above 122 F
Note 2: The prote	ection degree of the Chargi snow i	ng Dispenser is IP55. But for charging safety it should not be us f water can reach the charger connector.	ed during rain or

Table 3-5: Slim Line Dispenser (IDC200-FDC-UC2) Technical Characteristics

Technical Data		Description	Remarks
	Phases/Lines	(DC+,DC-) +PE	
	Voltage Range	Max 1000Vdc	
Nominal Input	Current	400A	
	Power	400kW	
	System Efficiency	≥ 99% (Full load)	
DC Output	Voltage	150~1000Vdc	
CCS2	Current	400A	
0002	Nominal Power	400kW	
Auxiliary Power	Voltage	480Vac	
Input	Current	0.6A	
	Dimensions(W*D*H)	30.04in x 9.45in x 16.34in (763*240*415 mm)	
Cabinet	Weight	110lbs (50kg)	
	Protection Degree	IP65	
Command Linit	Local Interface	Status LED	
Command Unit	Communication	CAN/Ethernet	
	Operating Temperature ¹	-22°F ~ +122°F (-30°C~+50°C)	
	Transportation/Storage Temperature	-40°F ~ +158°F (-40°C~+70°C)	
	humidity	5%RH~95%RH	
Environmental	Place of Installation	Indoor / Outdoor ²	
Conditions	Altitude	6561.68ft (2000m)	
Conditions	Sound Noise	≤55dB (nominal input/output power, the environment temperature is 25°C.)	
	Atmospheric Pressure	80KPa~110KPa	
	Overvoltage Category	III	
	Protection Class	Class I	

Table 3-6 Micro Dispenser (IDC400-FSW-U2) Technical Characteristics

Note 1: The Charging Dispenser provides full output power up to 50°C, output power derating 5% / °C above 50°C.

Note 2: The protection degree of the Charging Dispenser is IP55. But for charging safety it should not be used during rain or snow if water can reach the charger connector.

Тес	hnical Data	Description	Remarks
	Phases/Lines	(DC1+,DC1-)+PE	
	Voltage Range	Max 1000Vdc	
Nominal Input	Current	300A	
	Power	300kW	
	System Efficiency	≥ 99% (Full load)	
DC Output	Voltage	150~1000Vdc	
CCS1	Current	300A	
0001	Nominal power	300kW	
Auxiliary Power	Voltage	480Vac	
Input	Current	0.6A	
	Dimensions(W*D*H)	30.04in x 9.45in x 16.34in (763*240*415 mm)	
Cabinet	Weight	105.8lbs (48kg)	
	Protection Degree	IP65	
	Local Interface	Status LED	
Command Unit	Communication	CAN/Ethernet	
	Operating Temperature ¹	-22°F ~ +122°F (-30°C~+50°C)	
	Transportation/Storage Temperature	-40°F ~ +158°F (-40°C~+70°C)	
	Humidity	5%RH~95%RH	
Environmental	Place of Installation	Indoor / Outdoor ²	
Conditions	Altitude	6561.68ft (2000m)	
Conditions	Sound Noise	≤55dB (nominal input/output power, the environment temperature is 25°C.)	
	Atmospheric Pressure	80KPa~110KPa	
	Overvoltage Category	III	
	Protection Class	Class I	
Note 1: The Chargi	ing Dispenser provides full o	utput power up to 50°C, output power derating 5% / °C above 50	°C.
Note 2: The protec snow if water can r	tion degree of the Charging reach the charger connector	Dispenser is IP55. But for charging safety it should not be used a .	during rain or

Table 3-7 Micro Dispenser (IDC300-FSW-U2) Technical Characteristics

Tec	hnical Data	Description	Remarks
	Phases/Lines	(DC1+,DC1-)+PE	
	Voltage Range	Max 1000Vdc	
Nominal Input	Current	200A	
	Power	200kW	
	System Efficiency	≥ 99% (Full load)	
	Voltage	150~1000Vdc	
DC Output	Current	200A	
0001	Nominal Power	200kW	
Auxiliary Power	Voltage	480Vac	
Input	Current	0.6A	
	Dimensions(W*D*H)	30.04in x 9.45in x 16.34in (763*240*415 mm)	
Cabinet	Weight	97lbs (44kg)	
	Protection Degree	IP65	
0	Communication	CAN,LAN	
Command Unit	Communication	CAN/Ethernet	
	Operating Temperature ¹	-22°F ~ +122°F (-30°C~+50°C)	
	Transportation/Storage Temperature	-40°F ~ +158°F (-40°C~+70°C)	
	humidity	5%RH~95%RH	
Environmontal	Place of Installation	Indoor / Outdoor ²	
Conditions	Altitude	6561.68ft (2000m)	
Conditions	Sound Noise	<55dB (nominal input/output power, the environment temperature is 25°C.)	
	Atmospheric Pressure	80KPa~110KPa	
	Overvoltage Category	III	
	Protection Class	Class I	
Note 1: The Charg	ing Dispenser provides full o	utput power up to 50°C, output power derating 5% / °C above 50 Dispenser is IP55. But for charging safety it should not be used	°C. during rain or

Table 3-8 Micro Dispenser (IDC200-FSW-U2) Technical Characteristics

3.2) Model Description

Model	Configuration	Remarks			
IDC600K3-FMR5	10 charging connectors connection	600kW			
IDC500-LDC-UU2	CCS1(L)+CCS1	500kW+200kW			
IDC300-FDC-UU2	CCS1+CCS1	300kW+300kW			
IDC200-FDC-UU2	CCS1+CCS1	200kW+200kW			
IDC200-FDC-UC2	CCS1+CHAdeMO	200kW+200kW			
IDC400-FSW-U2	CCS1	400kW			
IDC300-FSW-U2	CCS1	300kW			
IDC200-FSW-U2	CCS1	200kW			

Table 3-9: ICE-600 System Models

- The ICE-600 System supports multiple terminal combinations, and the above configuration table is the most classic configuration.
- For all non-standardized combinations, please refer to the InCharge Energy Spec Sheet for the ICE-600 Split System

3.3) Standards

The ICE-600 Split DC Charger complies with the following standards:

- IEC 61851-1 2017: Electric vehicle conductive charging system. Part 1: General Requirements
- IEC 61851-23 2014: Electric vehicle conductive charging system Part 23: DC electric vehicle charging station
- IEC 61851-24 2014: Electric vehicle conductive charging system Part 24: Digital communication between a DC EV charging station and an electric vehicle for control of DC charging
- EN 61851-1 2019: Electric vehicle conductive charging system. Part 1: General Requirements
- EN 61851-23 2014: Electric vehicle conductive charging system Part 23: DC electric vehicle charging station
- EN 61851-24 2014: Electric vehicle conductive charging system Part 24: Digital communication between a DC EV charging station and an electric vehicle for control of DC charging
- UL 2202: Standard for Safety for Electric Vehicle (EV) Charging System Equipment
- CSA 22.2: Power Conversion Equipment
- UL 2202:2009 R2.18: STANDARD FOR SAFETY Electric Vehicle (EV)Charging System Equipment
- UL 2231-2 R08.16: STANDARD FOR SAFETY Personnel Protection Systems for Electric Vehicle (EV) Supply Circuits: General Requirements

 UL 2231-1 R08.16: STANDARD FOR SAFETY Personnel Protection Systems for Electric Vehicle (EV) Supply Circuits: Requirements for Protection Devices for Use in Charging System.

4.) Product Parts Presentation

The ICE-600 Split DC Charging System is composed of Power Cabinet and Charging Dispensers. The System can be installed indoors or outdoors. However, when installed outdoors and used during inclement weather (snow/rain), caution should be used when performing charging as water can reach the charging connector.

The ICE-600 separate DC charging system series of fast DC chargers have various possible output combinations, as shown in Figures 4.1, 4.2, and 4.3:

Figure 4.1 External View (Example: 10 connectors / 5 Slimline Dispenser system)

Figure 4.2 system Connection Diagram with all Slim Line Dispenser

Figure 4.3 System Connection Diagram with All Micro Dispenser

5.) Installation

5.1) Safety and Compliance

The working voltage and current inside the charging system is very high. The following rules should always be observed to ensure personal safety:

- Only personnel who have received training for and fully mastered the knowledge of the charging system can complete installation. During installation, always observe the safety precautions mentioned in this document and all relevant National Safety Regulations.
- It is necessary to make sure that the charging system DC output is disconnected in case of operation inside the charging system. The main inputs of the charging system must also be disconnected.

5.2) Grounding Instructions

An equipment grounding conductor, or a grounded, metal, and permanent wiring system is required for the ICE-600 charger connection. This should be run with circuit conductors and connected to the equipment grounding bar or lead on the ICE-600 charger.

5.3) Unboxing and Visual Inspection

- Check if the exterior packaging has been damaged by mechanical impacts or any accidents during transportation.
- If applicable, check that the exterior panels of the ICE-600 are without fault.
- Check if the interior of the Quick Charger Station is clean.
- Check if the door of the Quick Charger Station is working properly.
- Check for a proper Quick Charger Station protective ground connection point, which should be interconnected with the low voltage switchboard ground connection during the installation.

5.4) Assembly/Placing Instructions

- As shown in Figures 5.2 and 5.3, the concrete foundation should be made, and the height of the base should not be less than 7.9 in (200 mm).
- It is recommended to reserve a Φ 90 plastic pipe at the cable entrance, and the height of the pipe extending out of the foundation horizontal plane shall not be more than 3.15 in (80mm).
- As shown in Figure 5.2, mark the installation holes of four M12 expansion bolts on the concrete foundation.
- Drill 4 holes on the concrete foundation, select the hammer drill bit of Φ 16mm type, and use the percussion drill to drill the holes perpendicular to the ground at the above marked hole position, with the drilling depth of 2.36 ~ 3.15 in (60mm ~ 80mm).

- Use four M12 × 60 expansion bolts equipped with attached accessories, slightly tighten the bolts, vertically put them into the hole, and knock them with a rubber hammer until all the expansion pipes enter the installation hole.
- Screw off the bolt, spring pad and flat pad in turn counterclockwise.

Figure 5.1 Expansion Bolt Fixing of Concrete Foundation

5.4.1) Preparation of Concrete Foundation

Figure 5.2 Power Cabinet Concrete Foundation View

Figure 5.3 Slim Line Dispenser Concrete Foundation View

5.4.2) Power Cabinet and Dispenser Installation

5.4.2.1) Power Cabinet Installation

- The protective covers on both sides of the steel base of the cabinet can be removed, and the cabinet can be transported to the concrete foundation by forklift.
- Align the installation hole of the cabinet base and fix the cabinet on the concrete foundation with M12*60 expansion bolts at a torque value of 28.40 ft-lbs

Figure 5.4 Power Cabinet Installation View

5.4.2.2) Slim Line Dispenser Installation

Figure 5.7 Charging Dispenser Top View

5.4.2.3) Micro Dispenser Wall Mount Installation

Figure 5.8 Micro Dispenser Mounted on Wall

Figure 5.8.1 Micro Dispenser Wall Mount Bracket

Drill holes into the wall based on the dimensions of the bracket shown in figure 5.8.
 Secure the bracket onto the wall with four M10*60 bolts and torque them down to the specified value.

Figure 5.8.2 Micro Dispenser adapter brackets

 Secure the two brackets onto the back of the Micro Dispenser utilizing four M6*12 bolts.

 Lift and place the micro dispenser onto the wall mount bracket. Once placed, secure in place with four M5*12 bolts.

5.4.2.4) Micro Dispenser Overhead Mount Installation

Figure 5.9 Dispenser Mounted on A Steel Frame or Gantry

Figure 5.9.1 Micro Dispenser Gantry Mount Bracket

Drill holes into the wall based on the dimensions of the bracket shown in figure 5.9.
 Secure the bracket onto the wall with four M10*60 bolts and torque them down to the specified value.

Figure 5.9.2 Micro Dispenser adapter brackets

 Secure the two brackets onto the back of the Micro Dispenser utilizing four M6*12 bolts.

Figure 5.10 Micro Dispenser Gantry Mount

Installation on angled overhead support : As shown in the figure 5.11 : Firstly, combined with the slope of the parking gantry, adjust the installation support angle so that the installed terminal is perpendicular to the ground. (Installation supports four angle adjustments: 0°, 10°, 20°, and 30°, to adapt to different gantry slopes). Then, use the combination bolts to install the Installing support in the corresponding

position on the Parking sheet. Simultaneously install the Cabinet wall pendant on the charging dispenser. Finally, affix the charging dispenser onto the Installing Support.

Figure 5.11 Diagram of Adjustment Angle of The Installation Plate

5.4.3) Power and Signal Cable Connections

Notes: System cable connection see Appendix 3 for the electrical connection of the 600kW Split System. The communication distance between the system cabinets shall be less than 50m.

5.4.3.1) Connection Power Cabinet AC Input Cable

 Power Cabinet AC input wiring: two sets of AC input, using four-core cables, 3 phases + protective grounding as shown in Figure 5.12

Note:

Neutral Wiring is Optional and not Required

NO.	The section for AC feed cables	Amperage at 480Vac	Max. Power of charger	Specification of terminal screw	Reserved length inside cabinet	Wiring diagram
	(AC INPUT1) 3*240mm2+2*120mm2	380A	600444	L1/L2/L3/ is M12 PE is M10	31.5 in (0.8m)	Figure 5.8
1	(AC INPUT2) 3*240mm2+2*120mm2	380A	OUUKVV	L1/L2/L3/ is M12 PE is M10	31.5 in (0.8m)	
Aluminum conductors may be used in place of copper conductors. Ensure to properly size and install per National						
Electrical Code/Local Codes						

Table 5-1 Selection of AC Input Cable for Power Cabine	et
--	----

Notes:

- The AC feed power cables should be no less than 90°C (194 F) temperature resistant grade.
- The protective MCCB must be installed on the customer's distribution cabinet, and the upper MCCB capacity shall not be less than 1.25 times the input current.

- It is recommended that the upper MCCB should not be equipped with RCD function.
- This system is to be connected to a grounded, metal, permanent wiring system; or an equipment-grounding conductor is to be run with circuit conductors and connected to equipment-grounding terminal or lead on battery charger.
- Before electrical connection, all switches shall be placed in the disconnection position.

1	1QFP	Auxiliary Power 1 for Power Cube		
2	2QFP Auxiliary Power 2 for Power Cube			
3	3QFP	Auxiliary Power for Dispenser		
4	4 1QF AC Input MCCB 2			
5	1KMA	Main contactor 2		
6	2QF	AC Input MCCB 1		

7	2KMA	Main contactor 1
8	1SPD	AC SPD 1
9	2SPD	AC SPD 2
10	3SPD	AC SPD 3
11	ESD	Emergency Shutdown Device
12	LED	Light emitting diode

Figure	5.13	Power	Cabinet	AC	Input
1 Barc	5.15	10000	cubillet	<i>,</i> .c	mput

5.4.3.2 Connection of Power Cables

 It is recommended to select the connection cable between the Power Cube and the Dispensers according to the requirements in Table 5-2. Connect the power cable between the power Cabinet and the Dispenser as shown in the following diagram 5.14 and diagrams 5.15 and 5.16.

NO	Name of Connector	The section for DC feed cables	Amperage	Specification of terminal screw	Reserved length Power Cabinet	Reserved length Dispenser	Wiring diagram
1		2*0.37 in2(240mm2)	500A,1000V	(DC1+, DC1-) is M10	1m (39.37 in)	43.31 in (1.1m)	
2	Dispenser A DC	2*0.11 in2 (70mm2)	200A,1000V	(DC2+, DC2-) is M10	1m (39.37 in)	43.31 in (1.1m)	Figure 5.14 or 5.15
3	input	0.78 in2 (50mm2)	/	PE is M8	0.5m (19.68 in)	43.31 in (1.1m)	0.0.20
4		2*0.15 in2 (95mm2)	300A,1000V	(DC1+, DC1-) is M10	1m (39.37 in)	43.31 in (1.1m)	
5	Dispenser B DC Input	2*0.15 in2 (95mm2)	300A,1000V	(DC2+, DC2-) is M10	1m (39.37 in)	43.31 in (1.1m)	Figure 5.14 or 5.15
6	·	0.78 in2 (50mm2)	/	PE is M8	0.5m (19.68 in)	43.31 in (1.1m)	
7		2*0.11 in2 (70mm2)	200A,1000V	(DC5+, DC5-) is M10	1m (39.37 in)	43.31 in (1.1m)	
8	Dispenser C	2*0.11 in2 (70mm2)	200A,1000V	(DC6+, DC6-) is M10	1m (39.37 in)	43.31 in (1.1m)	Figure 5.14 or 4.15
9	·	0.78 in2 (50mm2)	/	PE is M8	0.5m (19.68 in)	43.31 in (1.1m)	
10		2*0.11 in2 (70mm2)	200A,1000V	(DC1+, DC1-) is M10	1m (39.37 in)	43.31 in (1.1m)	
11	Dispenser D DC Input	2* 0.78 in2 (50mm2)	125A,500V	(DC2+, DC2-) is M10	1m (39.37 in)	43.31 in (1.1m)	Figure 5.14 or 5.15
12	·	0.78 in2 (50mm2)	/	PE is M8	0.5m (19.68 in)	43.31 in (1.1m)	
13	Dispenser E	2*120mm2	400A,1000V	(DC1+,DC1-)is M10	1m	1.1m	Figure 5.16
14	DC Input	50mm2	/	PE is M8	0.5m	1.1m	0
15	Dispenser F	2*95mm2	300A,1000V	(DC1+,DC1-)is M10	1m	1.1m	Figure 5.16
16	6 DC Input	50mm2	/	PE is M8	0.5m	1.1m	U
17	Dispenser G	2*70mm2	200A,1000V	(DC1+,DC1-)is M10	1m	1.1m	Figure 5.16
18	DC Input	50mm2	/	PE is M8	0.5m	1.1m	-

Table 5-2 Selection of Cables from Power Cabinet to Dispenser

19	Auxiliary power input of Charging Dispenser	2*0.0038 in2 (2.5mm2)	1.2A,480V	L1/L2 is E2510	1m (39.37 in)	1m (39.37 in)	Figure 5.17, 5.18, 5.21, or 5.24
20	Can communication cable	UL2464 22AWG 2C With shielding	/	CANH/CANL is E0510	1m (39.37 in)	1m (39.37 in)	Figure 5.17, 5.18, 5.20 or 5.22
21	LAN communication of Charging Dispenser	2*CAT6 shielded network cable	/	Upper and Pilot controller LAN is RJ45	3m (118.11 in)	78.74 in (2m)	Figure 5.17, 5.18, 5.19 or 5.23

① KMD DC contactor

2	KMD	DC contactor
3	PE	Grounding copper bar

Figure 5.14 Power Cabinet DC Output

PE DC2- DC2+ DC1+ DC1-

PE DC2- DC2+ DC1+ DC1-

1	LED	Light emitting diode
2	LCD	Touch screen
3	CCS1/CCS2	Charging Connector
4	DC	DC input copper bar
5	J1	Auxiliary power supply
6	ETH	Network interface
\overline{O}	J2	Communication signal connector

Figure 5.15 Dispenser DC Output

Micro Dispenser E, F, G

Figure 5.16 Dispenser DC Input

5.4.3.3) Connection of Signal Cables (Slim Line Dispenser)

 The Signal and Auxiliary power connection between Power Cabinet and the Slim Line Dispenser are shown in Figure 5.17 and Cable selection according to table 5-2.

Figure 5.17 Power Cabinet auxiliary power supply and signal cable connection diagram for Slim Line Dispenser.

5.4.3.4) Connection of Signal Cables (Micro Dispenser)

 The Signal and Auxiliary power connection between Power Cabinet and the Micro Dispenser are shown in Figure 5.18 and Cable selection according to table 5-2.

Figure 5.18 Power Cube auxiliary power supply and signal cable connection diagram

5.4.3.5) Connection of Network Cable (Slim Line Dispenser)

Figure 4.14 Network cable connection diagram

Figure 5.19 Network cable connection diagram for Slim Line Dispensers

5.4.3.6) Connection of Signal Cable (Slim Line Dispenser)

Figure 5.20 Signal cable connection diagram for Slim Line Dispensers

5.4.3.7) Auxiliary Power Cable Connection (Slim Line Dispenser)

Figure 5.21 Power Cabinet and Dispenser Auxiliary power connection diagram for Slim Line Dispensers

5.4.3.8) Connection of Signal Cable (Micro Dispenser)

Figure 5.22 Signal cable connection diagram for Micro Dispenser

5.4.3.9) Connection of Signal Cable (Micro Dispenser)

Figure 5.23 Network cable connection diagram for Micro Dispenser

5.4.3.10) Auxiliary Power Cable Connection (Micro Dispenser)

Figure 5.24 Power Cabinet and Dispenser Auxiliary power connection diagram for Micro Dispensers

5.4.4) Power Module Installation

- Slim Line Dispenser: For the ICE-600 split type ten connector/five dispenser system, the charging modules are divided into ten sets of modules. Dispenser A utilizes two sets of modules, with dialing numbers of 1 and 2 respectively; Dispenser B utilizes two sets of modules, with dialing numbers of 3 and 4 respectively; Dispenser C utilizes two sets of modules, with dialing codes of 5 and 6 respectively; Dispenser D utilizes two sets of modules, with dialing of 7 and 8 respectively; Dispenser E utilizes two sets of modules, with dialing of 7 and 8 respectively.
- Micro Dispenser: For the ICE-600 split type ten connector/ten dispenser system, the charging modules are divided into ten sets of modules. Dispenser A utilizes one set of modules, with dialing numbers of 1; Dispenser B utilizes one set of modules, with dialing numbers of 2; Dispenser C utilizes one set of modules, with dialing codes of 3; etc. Each Dispenser will be addressed its own set of modules in order.
- As shown in the following figure 5.25 and 5.26 below:

Dial Switch, Left High, Right Low

Figure 5.25 Front view of Power Module

Front

Figure 5.26 Power Cabinet front view of Power Modules

The Power Module is heavy. Please be careful when moving the module. If the system is configured to less than 600kW output power, then some power modules will be removed. The empty power module slots must be covered by blanking plates. Otherwise, the system thermal management will not function correctly.

5.5) Controller Setting

Notes: Power Cabinet and Charging Dispenser Controller address settings. See Appendix 2 for the electrical connection of the 480kW split system.

5.5.1) Address Settings

- The ADD of the controller marked as "IMSU-X" in the Power Cabinet does not require an address to be set.
- The dispensers are addressed in a series layout, and the first dispenser in the line will be Dispenser A. Complete the address settings below. Once complete, make your way to the next dispenser set the address accordingly. Follow this address setting process for all remaining dispensers in the system.
- The ADD of the controller labeled "IMSU-X" in Dispenser A should be set to 0, pin1 set to OFF, pin2 set to OFF, pin3 set to OFF, and pin4 set to OFF.

 The ADD of the controller labeled " IMSU-X " in Dispenser B should be set to 1, pin1 set to OFF, pin2 set to OFF, pin3 set to OFF, and pin4 set to ON.

 The ADD of the controller labeled " IMSU-X " in Dispenser C should be set to 2, pin1 set to OFF, pin set to OFF, pin3 set to ON, and pin4 set to OFF.

 The ADD of the controller labeled "IMSU-X " in Dispenser D should be set to 3, pin1 set to OFF, pin2 set to OFF, pin3 set to ON, and pin4 set to ON.

 The ADD of the controller labeled " IMSU-X " in the Dispenser E should be set to 4, pin1 is set toOFF, pin2 is set to ON, pin3 is set to OFF, pin4 is set to OFF

• The ADD of the controller labeled "IMSU-X" in the Dispenser F should be set to 5, pin1 is set toOFF, pin2 is set to ON, pin3 is set to OFF, pin4 is set to ON.

• The ADD of the controller labeled "IMSU-X " in the Dispenser G should be set to 6, pin1 is setto OFF, pin2 is set to ON, pin3 is set to ON, pin4 is set to OFF.

 The ADD of the controller labeled "IMSU-X " in the Dispenser H should be set to 7, pin1 is set toOFF, pin2 is set to ON, pin3 is set to ON, pin4 is set to ON.

 The ADD of the controller labeled "IMSU-X " in the Dispenser I should be set to 8, pin1 is set to ON, pin2 is set to OFF, pin3 is set to OFF, pin4 is set to OFF.

 The ADD of the controller labeled "IMSU-X " in the Dispenser J should be set to 9, pin1 is set toON, pin2 is set to OFF, pin3 is set to OFF, pin4 is set to ON.

5.5.2) Resistance Setting

- The CAN communication line between the Dispensers is connected in a hand in hand manner. A 120 Ω resistor needs to be retained on the monitoring IMSU-X-CAN3 of the last Dispenser D, while the remaining CAN3 resistors of Dispenser A, Dispenser B, and Dispenser C are removed to ensure that the CAN bus is 60 Ω.
- Remove the CAN3 resistors from four Dispensers A, B, C, D. As shown in Figure 5.27. Move the jumper to pins 2 and 3.

Figure 5.27 Resistance Setting Diagram

Dispenser E requires the jumper to be placed on pins 1 and 2. As shown in Figure 5.28:

Figure 5.28 Resistance Setting Diagram

• Controller Dialing and resistance settings are shown in figure 5.29

Note: The CAN resistor jumper on pins 1 & 2 is installed on the last dispenser in the system. All other dispensers, the jumpers must be set on pins 2 & 3.

+ InCharge...

+ InCharge...

6.) Adding Cooling Liquid

6.1) Charging Dispenser Cold Source Description

 Liquid cooling system by the pump, reservoir, hoses, radiator, fan, pressure sensors, temperature sensors, liquid level alarm switch, drive controller, etc., As shown in Figure 6.1 below

Figure 6.1 Schematic diagram of cold source of the Slim Line Dispenser

6.2) Liquid Cooled Cable System

 The cable system consists of connector no.1, cable no.2, cable fixture no.3, terminal to power supply no.4, ground wire no.5, pipes for coolant no.6, sensor and communication wires no.7. The cable system is fully assembled and only must be connected to the charging station. As shown in Figure 6.2 below:

Figure 6.2 Schematic diagram of CCS1 liquid cooling connector

Notes

- There is a coolant pipe inside the liquid cooling connector. Users should ensure the minimum bending radius during charging R>10D.
- CCS liquid cooling connector: 10D = 10*1.2 = 12in (10*31.5 = 315mm)
- GBT liquid cooling connector: 10D= 10*1.6 = 16in (10*40=400mm)

6.3) Adding Liquid Step

- Prepare a funnel and a 5L (1.32 Gal) measuring cup, 6L (1.60 Gal) of silicone oil specified by the manufacturer.
 - Note: Huber silicone oil shall be used for CCS connector and 8025 Coolant oil shall be used for GBT liquid cooling connector. The two must not be mixed!

 Remove the fixing screws of the protective filter on the front of the charging terminal 6pcs*M4.

+ InCharge...

Funnel filling port

Figure 6.3 Front view of Dispenser

- Open the cooling source filling port bolt.
- Introduce 2200mL (0.60 Gal) of silicone oil into the measuring cup, add it to the fuel tank twice, add 1600mL to the fuel tank for the first time (always observe the oil level and stop adding liquid when the oil is below the high liquid level visual window), and tighten the filling port bolt.
- Once the system is powered on (see section 7), conduct the manual running of the liquid cooling system in each dispenser (as applicable). Perform the liquid cooling system oil circuit test. Observe that there is no leakage in the oil circuit and the oil pressure of the charging interface is normal (about 0.6~0.7Mpa). Ensure the oil temperature of connector is normal and it runs stably for 30 minutes. After the oil level is lower than the high liquid level sight window, open the cold source liquid filling port and add approximately 600mL (0.16 Gal) of silicone oil to the oil tank until you can see the level in the sight window. Ensure the oil level does not go above the high liquid level sight window. Tighten the liquid filling port cap. Turn off oil pump.
- Note 1: See Section 7 (START-UP) for powering on system. See Section 8 for Charging Dispenser startup and touch screen parameter settings.
 - Note: If the oil pressure is too low or 0 during the operation of the oil pump, please see if the oil pipe connection is in place or inspect for any kinked piping.
- Finally, install the protective filter on the front of the Charging Dispenser, and the cold source system is filled with liquid.

7.) Start Up

7.1) Verification and Inspection

- Check if the bolts of the AC and protective ground cables of the ICE-600 are correctly tightened to the specified torque
- Check the resistance between the ICE-600 protective ground and the low voltage switchboard ground connection; the value must be according to local codes.
- Grid AC with L1/L2/L3/PE wiring or DC+/DC-/PE wiring for DC input.
- Power modules panel address setting is correct.
- Before switching ON all the fuses and circuit breakers, check the supply voltage between lines: it must be 480V ± 10% 60Hz.

7.2) Switch On

- Grid AC input connection wiring (L1, L2, L3, PE) to Main breaker
- Check all switches in the system are off (System Main breaker, AC output breaker, Aux power input breaker).
- Install the power modules as needed. If there is an empty slot, a blank plate must be installed to cover the empty slot for proper air flow inside the Power Cabinet.
- Turn AC Grid power on, then check input voltages at the Power Cabinet. Verify voltages are 480VAC Phase to Phase and 277VAC Phase to PE. If voltages are not within tolerance, stop and verify system is fed with a 480/277VAC WYE electrical feed, check all input connections and wiring and try again.
- First switch on the auxiliary power switch 1QFP, 2QFP and 3QFPk of the Power Cabinet, as shown in Figure 7.1

1	1QFP	Auxiliary Power 1 for Power Cube
2	2QFP	Auxiliary Power 2 for Power Cube
3	3QFP	Auxiliary Power for Dispenser
4	1QF	AC Input MCCB 2
5	1KMA	Main contactor 2
6	2QF	AC Input MCCB 1
7	2KMA	Main contactor 1
8	1SPD	AC SPD 1
9	2SPD	AC SPD 2
10	3SPD	AC SPD 3
11	ESD	Emergency Shutdown Device
12	LED	Light emitting diode

Figure 7.1 Front view of Power Cabinet

 Next, switch on the auxiliary power switches QFP of charging Dispensers A through E (or A thru J if using all Micro-Dispensers) respectively, as shown in Figure 7.2

+ InCharge...

1	QFP	AC Input for Auxiliary Power

- Check all controllers and meters, LCD and LED.
- Switch the main circuit breakers 1QF and 2QF of the Power Cabinet system to enable the power module input., as shown in Figure 7.1.
- Finally check the alarm from the front panel LED and Display for information about the system. If all parameters are set properly and all self-checks are clear, no alarms should be present. If alarms are present, address as needed to clear all alarms.

Note:

 Please add liquid to the cold source system of the charging terminal before starting the system, otherwise the cold source system will fail to start properly due to improper oil level. The cold source system needs to be tested at the first power-on, and silicone oil is added to a reasonable position. (See Chapter 6 ADD LIQUID)

8.) Important Parameter Settings

Note: Before configuring any of the system components. Go to section 11.4.1 for the router set up procedure.

8.1) Dispenser Parameter Setup

- The parameter settings of the dispensers are basically the same as those of the integrated charger. The dispenser only has some unique parameter settings for the split charging system; Therefore, here we only introduce some parameters related to split charging system dispenser. Please refer to Document <IMMU2 Upper Controller Maintenance Guideline> for the remaining parameter settings.
- Notice: The parameters introduced below are essential to set after the system is installed.
- Login to the screen of the dispenser using the Root Login.
 - Param Set Parameter Name: Charger Typ 4 Charger System Index Parameter Name Parameter Value +00:00 Time Zone Split Dispenser-2 2024-08-29 11:23:52 2 System DateTime(UTC+0) Split Dispenser-3 (Click for Detail...) з Network Setting ОК Split Dispenser-4 4 Charger Type Split Dispenser-1 Dispensr Access OCPP Method LAN with 4G Router Split Dispenser-5 5 Cancel Split System Internal Network Segment 6 192.168.1.XX Split Dispenser-6
- 1. "Param Set" ->"Charger System" ->"Charger Type"

- The default value of parameter Charger Type is Integrated, and the split system dispenser needs to be set to the corresponding value, such as Dispenser-1 being set to 'Split Dispenser-1', Dispenser-2 being set to 'Split Dispenser-2', Dispenser-3 being set to 'Split Dispenser-3', and so on. This parameter is associated with the IP address of Upper ETH1, which will fix the IP address of ETH1 to 192.168.1.201~192.168.1.210. After setting this parameter, it needs to be restarted to take effect.
- 2. "Param Set" ->"Charger System" ->"Dispenser Access OCPP Method"

Active Alarr	n Detailed Info Param S	et Manual Ctrl Charge Rec	
	Charger S	ystem	None
Index	Parameter Name	Parameter Value	
1	Time Zone	+00:00	LAN with 4G Router
2	System DateTime(UTC+0)	2024-08-29 11:39:01	
3	Network Setting	(Click for Detail)	Independent 4G router
4	Charger Type	Split Dispenser-1	
5	Dispensr Access OCPP Method	LAN with 4G Router	
6	Split System Internal Network Segment	192.168.1 <i>X</i> X	

This parameter is a setting item for the dispenser access OCPP server method. It can choose from the above three values; the default value is LAN with 4G Router. The meaning of the three values are:

- None: The dispenser does not access OCPP Server, and the split charging system is connected to OCPP server through PC-Upper Controller.
- LAN with 4G Router: The dispenser accesses the OCPP server through a 4G router connected to the system LAN switch located in the PC. <u>Please ensure that the IP address of the 4G router connected to the power cabinet switch is 192.168.1.1.</u>
- Independent 4G Router: Each dispenser uses an independent 4G router to access the OCPP server. In this condition, the independent 4G Router will occupy the ETH1 of the Upper, so the network cable from the dispenser to the power cabinet does not need to be connected.
 - NOTE: To connect a Dispenser to an OCPP Server, 'OCPP Server End URL' and 'Charger ID' settings also should be set.
- 3. "Param Set" ->"Charger System" ->"Split System Internal Network Segment"

ve Alarm	Detailed Info Par	am Set	Manual Ctrl	Charge Rec	
	Char	ger Systei	n 🕨		
Index	Parameter Name	Pai	ameter Value		
1	Time Zone	+00):00		
2	System DateTime(UTC+0)	202	4-09-05 01:42:27		
3	Network Setting	(Cli	ck for Detail)		
4	Charger Type	Spl	t Dispenser-1		192.168.1 <i>.</i> XX
5	Dispensr Access OCPP Method	LAN	l with 4G Router		197 168 99 XX
6	Split System Internal Network Segment	192	2.168.1.XX		132.100.3334

- This parameter is the network segment used by the dispenser to access the system LAN. The default value is "192.168.1. XX", and the other value is used by other systems.
- 4. "Param Set" ->"Charger System" ->"CCU Work Mode"

+ InCharge...

ctiv	e Alarm	Detailed Info	Param S	et Manual	Ctrl	Charge Re	с	Standalone RS232	
		•	CCU Gro	oup 🕨				Standalone TCD	
	Index	Parameter Name		Parameter Val	Je				
	1	Charger/CCU Specific Sett	ings	(Click for Detail.)			Ring Address #1	
	2	Smart Charge Accuracy Co	mpensation	0%					
	3	AC Main input includes AC input	connector	Yes				Ring Address #2	
	4	CCU Work Mode		Standalone TCP				Ring Address #3	
	5	Is the Liquid Module Insta	alled	No					
	6	Liquid-cooled Connector I type	installing	Not Installed				Ring Address #4	

- This parameter is the communication method between the dispenser upper controller and the pilot controller. The default value is Standalone TCP, be careful not to modify the default value.
- 5. "Param Set" ->"Charger System" ->"PC DC Output Number of Connector-A/B"

• These parameters are the DC output numbers of the power cabinet corresponding to the dispenser connectors A/B.

- In the above example, Dispenser-1 connector A is connected to power cabinet DC-1 and connector B is connected to power cabinet DC-3.
 Dispenser-2 connector A is connected to power cabinet DC-5 and connector B is connected to power cabinet DC-7. So, dispenser-1 should be set as 1 and 3, dispenser-2 should be set as 5 and 7.
- If the dispenser installed is a Micro-Dispenser, only the parameter of connector-A should be set to the proper PC output, and connector-B should be set to 0.
- Verify for all dispensers the power cabinet output connected to the dispenser input for each connector and assign accordingly.
- See Section 9 for a full list of configuration settings and appropriate values/ranges.

+ InCharge...

192.1	168.1.100/login								
地图	🛄 InfyPower运维管理	ChatGPT	🧧 InfyPower运维管理	C 基于openssl建立tls	营 直流微网技术及发	C++封装sqlite3库	C java sqlite sqlite_b		
				Cha	rger Web M	lanagemer	nt System		
				Login to	admin page	English	V		
				ROOT			\vee		
								1	
								J	
				root kow	t. Coloct o filo				
				TOOL_Key:	L Select a file				
						ОК			

8.2 Power Cabinet Parameter Setup

- The Power Cabinet Upper Controller does not have an HMI, so a webpage is used to access the power cabinet upper controller for parameter settings and information display.
- To access this, use an Ethernet cable and connect a laptop to The ETH2 port on the Upper Controller. Open a web browser and go to IP address 192.168.99.100. Login using the ROOT access password and root key file.

	Charger Sys	tem CCU Group	Charging Gun	Card Reader	PCU	Rectifier Grps	AC Cabinet
Charger System		Split System Internal	Network Segment	192.168.1.XX	✓ Edi		
ത്രം Quick Settings		Power Cabinet Ac	cess OCPP Enable	Enabled	Edi		
E Detailed Info			Charger ID		1480		Edit
Param Set		OC	PP Server End URL	ws://192.168.	1.35:6019		Edit
🕄 Manual Ctrl			Security Profile	Profile 0	Edi		
Data Service >		Langua	ge Selection Mode	All	Edi		
Firmware > Management >		Disper	nser Installed Total	12		Edit	
🔘 User Management		Charging	Gun Installed Total	12		Edit	
[→ Quit			Dispenser Type	Standard	✓ Edi		
			LCD Language	English	Edi		

- 1. "Param Set" ->"Charger System" ->"Split System Internal Network Segment"
 - This parameter is the network segment used by the power cabinet upper controller to access the system LAN. The default value is "192.168.1. XX", and the other value is used by other systems.
- 2. "Param Set" ->"Charger System" ->"Power Cabinet Access OCPP Enable"
 - If the power cabinet needs to access the OCPP server, this parameter needs to be set to Enable, 'OCPP Server End URL' and 'Charger ID' also should set. See Section 7.3 for details.
- 3. "Param Set" ->"Charger System" ->"Dispenser Installed Total"
 - Set the total number of dispensers installed in the system.
- 4. "Param Set" ->"Charger System" ->"Charging Gun Installed Total"
 - Set the total number of charging guns that are installed in the system.
- 5. "Param Set" ->"Charger System" ->"Dispenser Type"
- 6. "Param Set" ->"PCU" ->"PCU Settings"
 - The PCU setting parameters are related to the power cabinet, and these parameters are very important. Some of these parameters must be set before the system runs.

PCU Settings Edit		Edit			
Firmware Version	1.07		IMSU-X Hardware Version	A02	
Boot Version	02.00		IMSU-X Startup Times		
Door Open Alarm Enable	Disabled	v	SPD Alarm	Enabled	V
EPO Voltage Level	Alarm Norm	ally Open 🗸	Total PM Grp Number	12	
Total PM Number	20		Total DC output	5	
Total Dispenser Number	4		Soft-start Time	1	second
AC Meter Ratio			AC Sleep Interval	0	min
Input Over Voltage Point	450	v	Input Under Voltage Point		v
Output Max Voltage	1050	v	Contactor Abnormal Judge Time	2	second
PM inlet overheating point		o.	PM outlet overheating point	93	c
Busbar Lv1 overheating point	90	o.	Busbar Lv2 overheating point	120	°C.
Temperature alarm hysteresis	5	o.	Busbar overheating curr Imt period	5	min
Busbar overheating curr Imt percent		4	Cooling Devices Type	Air cooling	V
AC Input Power Limit		ĸw	Cabinet Fun Min Speed	25	5
Cabinet Fun Max Speed		5	Power Cabinet Fan Min Speed Temper ature	40	0
Power Cabinet Fan Full Speed Temper ature	70	o.	Busbar Temperature Sensor Install	Not Installed	v
			AC Input Single	No	V
PDU Inner Ring Enable	Yes	~	System Efficiency Setting	93	5
ir cooled PC Outlet Over Temperature		c	Air cooled PC Outlet Over Temperature		10

Parameter Name	Description	Value Range	Default Value	Remark
PCU Firmware Version	/	Read Only	/	
IMSU-X Hardware Version	1	Read Only	/	
Boot Version	Boot Loader Version	Read Only	/	
IMSU-X Startup Times	PCU Startup Times	Read Only	/	
Door Open Alarm Enable	/	Enable / Disable	Enable	
SPD Alarm Enable	/	Enable / Disable	Enable	
EPO Voltage Level	/	Alarm Normally	Alarm Normally	
		Close /	Close	
		Alarm Normally		
		Open		
Total PM Grp Number	The total number of power module groups in the	0~16	8	must be manual
	power cabinet			set
Total PM Number	The total number of power modules in the power	0~32	16	must be manual
	cabinet			set
Total DC Output Number	The total number of DC output busbar in the power	0~16	16	must be manual
	cabinet			set
Total Dispenser Number	The total number of dispensers in the system	0~12	6	must be manual
				set
Soft-start Time	Soft start time of power module	0~255 S	15	
AC Meter Ratio	If the system has a AC meter, this parameter needs	1~99999	160	
	to be set			
AC Sleep Interval	The time interval for the system to enter sleep mode	0 ~ 255 S	0 S	
	from idle. If set to 0, it means the system will not			
	enter sleep mode			
Input Over Voltage Point	If the input line voltage is greater than this value, an	0 ~ 2000 V	450 V	
	alarm will be triggered			
Input Under Voltage Point	If the input line voltage is less than this value, an	0 ~ 2000 V	310 V	
	alarm will be triggered			

Output Max Voltage	The maximum voltage that the power module can output	0 ~ 2000 V	1050 V	
Contactor Abnormal Judge Time	After controlling the contactor, determine the time interval for abnormal contactor status	0 ~ 255 S	2 S	
PM inlet overheating point	If the PM inlet temperature is greater than this value, an alarm will be triggered	0 ~ 255 'C	80 'C	
PM outlet overheating point	If the PM outlet temperature is greater than this value, an alarm will be triggered	0 ~ 255 'C	93 'C	
Busbar Lv1 overheating point	If the temperature of the busbar is greater than this value, LV1 alarm will occur. And the charging power will decrease	0 ~ 6553 'C	90 'C	
Busbar Lv2 overheating point	If the temperature of the busbar is greater than this value, LV2 alarm will occur. And the charging will stop	0 ~ 6553 'C	120 'C	
Temperature alarm hysteresis	When an over temperature alarm occurs, the alarm will only disappear if the temperature drops below the hysteresis value	0 ~ 255 'C	5 'C	
Busbar overheating current period	When the LV1 over temperature alarm of the busbar occurs, the cycle time of current limiting.	0 ~ 255 Min	5 Min	
Busbar overheating current percent	When the LV1 over temperature alarm of the busbar occurs, the percentage of current limiting.	0~100%	80 %	
Cooling Devices Type	Cooling method of power cabinet	Water Cooling \ Air Cooling	Air Cooling	
AC Input Power Limit	System total AC power limit value.	0 ~ 65535 KW	10000 KW	
Cabinet Fan Min Speed	Minimum speed of rotation for power cabinet fan	0~100%	25 %	
Cabinet Fan Max Speed	Maximum speed of rotation for power cabinet fan	0~100%	100 %	
Power Cabinet Fan Min Speed Temperature	The starting temperature of the power cabinet fan	0 ~ 255 'C	40 'C	
Power Cabinet Fan Full Speed Temperature	There is a linear relationship between temperature and fan speed, and at this temperature, the fan speed will reach its maximum	0~255 'C	70 'C	

Busbar Temperature Sensor Install	Is the temperature sampling sensor of the busbar installed?	Not Install\ Install	Not Install	
AC Input Single	Is it a single AC input? If it is No, then the AC input is dual channel	No \ Yes	No	
PDU Inner Ring Enable	Installation Enable for Inner Ring Contactor of Power Distribution Unit	No \ Yes	No	
System Efficiency Setting	Assumed value of system efficiency. This value can be used to calculate the total available power on the DC side	0~100%	93 %	
Air cooled PC Outlet Over Temperature Lv1	LV1 overheating point at the outlet of the power cabinet. If the temperature at the outlet of the power cabinet exceeds this value, the system will run at reduced power and alarm.	0 ~ 120 'C	90 'C	
Air cooled PC Outlet Over Temperature Lv2	LV2 overheating point at the outlet of the power cabinet. If the temperature at the outlet of the power cabinet exceeds this value, the system will become unavailable and alarm.	0 ~ 120 'C	100 'C	

7. "Param Set" -> "AC Cabinet" -> "AC Cube Setting" -> "AC Meter Enable"
 AC Cabinet

AC Cube Setting
IMEU2 Device Type Block

- o If the system is installed with an AC input meter, this value should be set to enable.
- 8. "Param Set" ->"AC Cabinet" ->"AC Contactor Setting"

AC Co	ontactor Setting	Cancel	
AC Contactor Total Number	2	1#PM Group AC Input Contactor	1
2#PM Group AC Input Contactor	1	3#PM Group AC Input Contactor	1
4#PM Group AC Input Contactor	1	5#PM Group AC Input Contactor	2
6#PM Group AC Input Contactor	2	7#PM Group AC Input Contactor	2
8#PM Group AC Input Contactor	2	9#PM Group AC Input Contactor	0
10#PM Group AC Input Contactor	0	11#PM Group AC Input Contactor	0
12#PM Group AC Input Contactor	0	13#PM Group AC Input Contactor	0
14#PM Group AC Input Contactor	0	15#PM Group AC Input Contactor	0
16#PM Group AC Input Contactor	0		

- 'AC Contactor Total Number' is set to the actual number of AC contactors installed in the system. Next is the mapping relationship table between power module and AC input contactors. Non-existent power module groups write 0.
- Example: Standard ICE-600 Power Cabinet has 20 total Power Modules configured into 10 Groups of 2 and has 2 AC Input Contactors. Groups 1-5 are connected to the #1 AC Input Contactor, and Groups 6-10 are connected to the #2 AC Input Contactor. The settings required for proper operation are shown in the above image.

8.3) Reset and Test

8.3.1) System Self Check

Ensure there are no vehicles connected to the charger and all charging cables are in their proper holsters. Close and lock all the equipment doors except for the Power Cabinet. Enter the PC-Upper Controller webpage (192.168.1.100) and initiate a system Self Check by going to Manual Ctrl → PCU → Start System Self Check.

ROOT	Ē	Charger System	CCU Group	Charging Gun	Card Reader	PCU	Rectifier Grps	AC Cabinet
Charger System		PCU						
🛞 Quick Settings				Manual Ctrl Mode	Exit Manual C	trl Mode	Enter Manual Ctr	Mode
😑 Detailed Info		Reset PCU			Execute			
② Param Set		Clear Debugging Data			Execute			
🗐 Manual Ctrl			Start S	System Self Check	Execute			
Data Service >			Cab	inet Door LED Ctrl	Valid Range:0	~ 5		
 Firmware Management 			Cab		Set			

 Pay attention to safety during the Self Check. After the Self Check starts, the power modules and contactors will perform a series of sequential actions until the end; The process takes about a few minutes. If the Self Check passes, there will be no alarms. If the Self Check does not pass, an alarm will prompt which items have not passed. Address the alarms as necessary.

9.) Description of Relevant Parameters

- The important setting parameters of the power cabinet and liquid-cooled charging terminal of the split charging system are described in the following table:
- Input User Level and Password: Root

NO.	Parameter name	Default parameters	Remarks
1	CCU Work Mode	There is a dial switch on the back side of Pilot controller, which corresponds to terminal address # 1 or # 2	At the same time, it also needs to correspond to the network TCP # address on the billing unit.
2	Liquid-cooled Connector Installing type	One dispenser can support up to one liquid cooling connector and can choose no/A gun or /B gun.	Select the connector installation position, and the corresponding 485 (# 1 or # 2) bus of the pilot controller will communicate with the IMEU2. Consistent with the system wiring.
3	Liquid-Bump Max Speed	Default maximum 50%	The pilot controller is sent to the IMEU2 board via RS485
4	Fan Speed Limit (Aux)	Default 100%	The small fan on the top side of the dispenser is used for cooling in the cabinet and running during charging.
5	Power Cabinet System Fan Full Speed Temperature	Default 131 F (55°C)	Pilot controller sent to IMEU2 offline via CAN
6	Power Cabinet System Fan Start up Temperature	Default 113 F (45°C)	Pilot controller sent to IMEU2 offline via CAN
7	Power Cabinet System Fan Startup Speed	40%	Starting speed of fan of power Cabinet system
8	Fan Speed Limit	100%	Power Cabinet system fan full speed limit.
9	Liquid-Bump Max Speed	100%	Max speed of liquid cooling unit oil pump
10	Liquid-Bump Startup Speed	20%	When the oil pump of the liquid cooling unit starts slowly, the initial speed.
11	Ring Nodes Total(connector)	Default 4	Note that it is actually consistent with the number of groups of modules. Even if there are only two guns, if there are four groups of modules, it needs to be set to 4.
12	Liquid Pump Full Sped Start up Temperature	Default 95 F (35°C)	The oil pump reaches the maximum speed when the oil temperature exceeds 35 degrees.

13	Liquid Pump Work	Default 1 min	
	Duration at Low		Time to prevent solidification
	Temperature		disturbance when oil temperature is
14	Liquid Pump Pause Duration at Low	Default 2 min	too low.
	Temperature		
15	Max Output Current when	Default 300A	
	liquid oil is in: Low Temp		
	temperature		
16	When Gun Temp Over this	Default 149 F (65°C)	
	point, act as Normal Gun		
17	Max Output Current when	Default 100A	-
	act as Normal Gun		
18	Cool Source EnvTemp High	Default 122 F (50°C)	-
	Point		
19	Cool Source EnvTemp Low	Default -13 F(-25°C)	
	Point	, , , , , , , , , , , , , , , , , , ,	
20	Liquid Oil High Pressure	Default 0.9Mpa	-
	Alarm Point		
21	Connector Over	Default 185 F (85°C)	1
	Temperature		
22	Connector Ultra	Default 203 F (95°C)	
	Temperature		
23	Conn Recover from	Default 149 F (65°C)	-
	OverTemp Point		
24	Pressure Meter Range	Default 16	1
25	Motor Pole Pair	Default 4	1
26	Power Cabinet AC input	Default 2]
	Channels		

10.) Power Distribution Strategy

10.1) Introduction to Power Nodes

 Each group of power modules is referred to as a group(s), corresponding to a charging gun (if the group is not connected to a charging gun externally, the group only performs power switching).

When charging begins, only the node corresponding to the charging gun provides output power. The node outputs power according to the demand of the dispenser. When the dispenser requests an increase in power, the node searches for available sub-nodes to parallelize with. When there is excess charging power, the root node will search for endterminal sub-nodes and exit the parallelization.

 Using a 10-node system as an example, each node is connected to adjacent nodes on the left, right, and inside.

10.2) Scenario 1: Increasing Charging Power

- Group 1's left Group is Group 10, its right Group is Group 2, and its inside Group is Group 6.
- Group 1 serves as the root Group for charging. When the dispenser requests an increase in charging power, Group 1 will select Group 10 (left) as a sub-group. If the dispenser requests another power increase, Group 1 will select Group 2 (right) as a sub-group. And if the dispenser requests yet another power increase, Group 1 will select Group 6 (inside) as a sub-group. If, in this situation, the dispenser still requires a further increase in charging power, Group 1 will go through Group 10 (left of Group 1) to select Group 9 (left of Group 10) as a sub-group.
- Therefore, when there is a need to increase the charging power during the charging process, the root group will sequentially increase the power by selecting the left group, then the right group, and finally the inside group.
- If a group is found during the search process, but it is not an idle group (e.g., currently charging, charging as a child group, or experiencing a malfunction), then the algorithm will skip that group and continue searching for another available group. The goal is to find a suitable, idle group that can meet the changing requirements.

10.3) Scenario 2: Decreasing Charging Power

- When the required power decreases and remains below the current root group's maximum charging output power minus the maximum output power of the furthest end-terminal child group for a continuous duration of 30 seconds, the power allocation for the endterminal group will be terminated.
- Using the example provided: Group 1 serves as the root group, and Groups 10, 2, 6, and 9 serve as child groups. At this stage, the maximum output power of the root group is the sum of the maximum output powers of Group 1, Group 10, Group 2, Group 6, and Node 9.

Since Group 9 is the furthest end-terminal group, when the charging power drops below the difference between the maximum output power of the root group and the maximum output power of group 9, and this condition persists for 30 seconds, Group 9 will exit and become an idle node. At this point, Groups 10, 2, and 6 become the new end-terminal child groups.

 When the charging power decreases further and meets the conditions for exiting a child group for a continuous duration of 30 seconds, the root group will exit the group with the lowest power among groups 10, 2, and 6 (for example, if group 10 has a maximum power of 60 kW, Group 2 has a maximum power of 60 kW, and Group 6 has a maximum power of 30 kW, then Group 6 will be exited).

 As shown in the diagram, when the required power decreases and meets the conditions for the furthest end- terminal group (Group 9) to exit for a continuous duration of 30 seconds, it will be prioritized for termination. Then, as the required power decreases further, with the new end-terminal groups being 10, 6, and 2, the group with the lowest output power will be prioritized for termination.

10.4) Scenario 3: Charging Initiated at Node Along the Power Path

 In this scenario, Group 1 serves as the root Group, and Groups 10, 2, 6, and 9 serve as child groups. At this moment, Group 10 initiates charging through its corresponding charging gun. As a result, Group 10 and all its child groups will exit the charging process and become idle groups. Group 10 will then function as a new root group, providing output power to the corresponding charging gun.

Note: Group 10 is the new primary group

 In this situation, if the charging power is insufficient for the root Group 1, it will search for new child group by traversing through its child groups 6 and 2. Similarly, if the charging power of the root group 10 is insufficient, it will search for child nodes by exploring the leftside group 9 and the inner group 5. This scenario is similar to Scenario 1.

11.) User Operation

 The ICE-600 operation depends on its output connections: CCS or CHAdeMO. During the charging process, the Human Machine Interface (HMI), will give instructions and will signal different stages. These sequences are shown in this section.

11.1) Output Connector

- The ICE-600 is prepared to charge electric vehicles according to the charging systems mentioned. **Notes**: There is a coolant pipe inside the liquid cooling connector.
- CCS liquid cooling connector: Bending of the cable should be minimized to prevent restriction of the liquid coolant within the cable.
- See section 6.2 for more details

11.1.1) CCS1 and NACS Connector

11.2) Operation Instructions

 When the user starts the operation on the charging distributor, if all output connections are idle or the device allows DC charging, the HMI display will display the following screen:

CCS1+CCS1 Units

11-01-2020 17:18:34	🛄 📮 🌘 en 🥐		
8 DC1	© DC2		
Plug the Connector	Plug the Connector		
Front Contraction	F 1000		
Ready	▶ Ready		

- Charging Steps
 - Plug the charging connector into the vehicle interface. UI main page display connector has "Plugged". Click "→Start" Button.

30-03-2021 16:48:45	Charger1	I 🛄 💽 🥐
8 DC1		BDC2
Plug the Connector	Plugged	
100	4	
		▶ Start

• Swipe the RFID or scan QR Code or use OTP by inputting the password to start the charging.

• Select Auto/Time/SOC/KWh charging strategy (Optional)

30-03-2021 16:49:30	Chargerl	, 1 (e n S
8 ⁵	last a Charma Mad	Timeout 54
56		
By Time		By SOC
	Auto	By kWh

• On Waiting Start Charge.

• On Charging
30-03-2021 16:51:11	Charger1	🖵 🛄 🌒 🥐
@ DC1		
Plug the Connector	Charging	g(Auto) 19.9kW Energy: 0.08 kWh Used Time: 1.5 min Remain Time: 40 min Volt: 500.1 V Curr: 39.9 A (REQ)500.0V/85A Stop

• After the vehicle is fully charged, stop charging first, then unplug the charging connector.

11.3) Ethernet and OCCP Setting

- There are 2 standard parameters for back-end setting. Please get them from the back-end supplier.
 - Charger ID
 - OCPP Server End URL

Example 1: for a charge point with identity "CP001" connecting to a Central System with OCPP-J endpoint URL "ws://centralsystem.example.com/ocpp" this would give the following connection URL:

ws://centralsystem.example.com/ocpp/CP001

Figure 12.1 Example of OCPP-J 1.6 Spec

Notes: The protocol upper controller supports OCPP-J 1.6 and 2.0.1. Please refer to the OCPP official documents if you have any questions about the above 2 parameters or the protocol itself.

11.3.1) Connection Check

- If the above settings are done properly, you should see the ^(C) icon on screen (without reboot).
- Check the OCPP Platform for proper communication of the charger. Seeing the icon on the display screen only shows the charger is connected to the system but does not show the system sees the charger properly.

11.4) Network Setting

11.4.1) Router Set Up

This guide is intended to help configure the main Cradlepoint router inside the Power Cabinet for external communication. Log into the SSID of the Cradlepoint via the web browser.

 Click on "Devices" enter in the MAC address of the router that needs to be configured. Click on the device and it will bring you to the device page. If logging in via SSID you can skip this step.

ని netc	loud											â Reve	re Consulting - James Tuppince	e 0° 0
📰 Dashb	oard	Dev	/ices											
		Route	ers Networl	k Interfaces										
Groups	s utrs										All Accounts & Groups	• Filter ()	Filter	>
Alerts	& Logs	د م	nfiguration 🐱	🌸 NetCloud OS 🐱	Comma	nds 🖌 🤸 Remote C	onnect 🗸 🕂 Move				Updated: 11/27/2024 03:05	IPMUTC (> (> ± III	Open by default RESET FILTER	
🖹 Insight	ts -		h-	8	da	Name	Description	Asset Identifier	Product	MAC Aridross	Group	NetCloud OS	00:30:44:90:60:91 ×	
F Tools	ations		•		\$	RD test router			IBR600C	00:30:44:9D:60:91	golden config	7.24.60 (2024-0	Type to Filter	Add ADVANCED ~
🛋 mogra	nt												Product	
🟋 Markel	tplace												Select a Product	•
🗂 Resour	rces													

 On the Device page click on "Configuration" then "Edit". Drag Ethernet to the top of the list of "WAN Device Interface Profiles & Priority".

+ InCharge

 Once "Ethernet" is at the top of the list, under Connection Manager click on "Networking" and in the sub tab click "Local IP Networks". Click on the first option check box and hit "Edit."

ని	netcloud	0		
	Dashboard	Routers > RD test router		
			ost routor	
		Revere O	Consulting • golden config • IBR60	DOC
×-	Groups		····· · · · · · · · · · · · · · · · ·	
•	Networks	Home Configuration Data Usage	Health Extensibility Troublesho	oting
▲	Alerts & Logs			
B	Insights	Status Edit Summary Tools		
عر	Tools			
.				
	integrations	G	Networking > Local Networks > Local I	IP Networks
血	Account			
1	Marketplace	P CONNECTION MANAGER	Local IP Networks	
۵	Resources	88 IDENTITIES	😝 Add 🧪 Edit 😣 Remove	
			🖂 R&D	192.168.100.1
		Local Networks	Multicast Proxy:	Disabled Attach
		Wireless (WiFi) Settings	DHCP Relay:	Disabled • WiFi
		Ethernet Ports	DHCPv6 Relay:	Disabled
		Hotspot Services	Schedule:	Disabled
		DHCP Server	VRRP:	Disabled
		L and IR Naturaliz	IPv6 Addressing Mode:	SLAAC with Full DHCP
			Access Control:	Admin Access
		MAC Filter & Logging	Guest LAN	192.168.10.1
		Wil-I Analytics	Multicast Proxy:	Disabled
		VLAN Interfaces	DHCP Server:	Enabled - WiFi
		Tunnels	DHCP Relay:	Disabled
		Routing	DHCPv6 Relay:	Disabled
		QoS	Schedule:	Disabled
		DNS Servers	IPv4 Routing Mode:	NAT
		WiFi as WAN, or Client	IPv6 Addressing Mode:	SLAAC with Full DHCP
		Client Data Usage	Access Control:	Disabled
		NHRP		
		ŧŧ system		

 Click on "IPv4 settings" and make sure the IP address is the correct scheme needed for the Ice cube. This will ensure that all dispensers can properly communicate locally and externally to InControl. The IP address should be changed to 192.168.1.1.

🗘 R&D E	ditor		
General Settings	Provide a unique IPv4 address rang	e for this network.	
IPv4 Settings	IP Address:	192.168.100.1	
IPv6 Settings	Netmask:	255.255.255.0	
Interfaces	IPv4 Routing Mode:	NAT (default)	~
Access Control	Always Proxy ARP:		
IPv4 DHCP			
Multicast Proxy			
IPv6 Addressing			
Schedule			
VRRP			
STP			
Wired 802.1X			
		Cancel Save	•

 Hit "save" then hit "Commit" at the bottom of the screen to update the Cradlepoint configurations.

11.4.2) Wireless Network Configuration

- First, check if your system is equipped with an external wireless router.
- This router is installed inside the Power Cabinet and is connected with the Network Switch with a RJ45 network cable. The router is usually pre-installed along with the charger before leaving factory, therefore the only thing needed to ensure it is operating properly.

11.4.3) Wired Network Configuration

- First, check if your system is equipped with an external wireless router.
- Connect the customer ethernet cable from their router LAN port to the WAN port of the Cradlepoint.

11.5) Charger Software Update

- The charger can update the firmware through OCPP or OEM backend remotely, or local update through USB drive to update the firmware of the upper controller and pilot controller.
- The following figure 11.1 software version is for reference only, the actual situation shall prevail.

20-05-2021 20:58:43				
	软件版本:	N3.00.519T1 (5039A10)	PW(2.030, 1	.040)
	系统型号:	Test_ChargeModel		
	充电桩SN:	Test_123456		
	输出电压:			
	最大输出电流:			
	桩编号:	infytest_2CCS		
	有线网络 1-IP地址:	192.168.1.100		
	有线网络 2-IP地址:	192.168.100.100		
	无线网络-IP地址:	-		
				更多>

Figure 11.1 Software Version

 CAUTION: It is imperative that the correct firmware be installed into each component. If the incorrect firmware for a component is installed, the component may require replacement and full reprogramming prior to operating properly. Please contact InCharge Support for assistance.

11.5.1) Upper Controller Update

For upper controller's update, firstly power on the controller, and then plug the USB drive into the controller's USB inlet, and then go into the setting in "Manual Ctrl" --> "Charger System" -->

"Reboot System", need to input "Soft Reset", and waiting the automatic update finish, and then take off the USB disk. Check the software version as shown in Figure 11.2.

07-0	-05-2019 19:24:22			8 💷 0	
	Run Info	Detailed Info	Param Set	Manual Ctrl	History Aim
		Charger	r System >	1	
	Index	Parameter Name	Parameter \	Value	
	1	Reboot System	Soft Reset		-
	2	Data Backup/Restore	Backup		\bigcirc
	3	Calibrate Touch Screen	Execute		1/1
	4	Clear Factory Debug Data	Execute		
					\bigtriangledown

Figure 11.2 Software Version

11.5.2) Pilot Controller Update

For pilot controller's update, firstly power on the controller, and then plug the USB disk into the controller's USB inlet. Then restart the system (disconnect the auxiliary switch, then close it again). Pay attention to the sound. After hearing three beeps, it means the upgrade is complete. You can pull out the USB drive. Check the software version as shown in Figure 11.3.

Figure 11.3 Software Version

Appendix 1) Engineering and Technical Parameters

- Reliable wall installation on both sides of the Power Cube. The front door should have a minimum gap of 1050mm to provide maintenance space.
- The lower part of the rear door of the Power Cube is air intake and the upper part is air outlet. A minimum gap of 1500mm should be provided to prevent hot air from flowing back into the inlet.

Power Cabinet Three Views

Power Cabinet Space Requirement

- The Slim Line Dispenser is reliable for wall installation, but it is recommended to leave at least 39.47 in (1000mm) distance. The front door should have a gap of at least 39.47 in (1000mm) to provide maintenance space.
- The Charging Dispenser has a right-side air inlet and a left side air outlet. A minimum gap of 39.47 in (1000mm) should be provided to prevent hot air from flowing back into the inlet.

Slim Line Dispenser Three Views

The Micro Dispenser is reliable for Wall installation. The front door should have a gap of at least 23.62in (600mm)

Micro Dispenser Space Requirements

+ InCharge

Slim Line Dispenser:

Micro Dispenser

Appendix 3) System Electrical Connection Diagram

Method for removing CAN3 120 Ω Resistor from IMSU-X Monitoring

 Step 1: Unscrew the two screws on the left and right sides of the upper part of the IMSU-X monitoring board, and the upper monitoring board can be pulled out, as shown in the following figure

• Step 2: Find the matching resistor jumper cap on the monitoring board, as shown in the following figure.

Step 3: Both jumper caps need to be changed from PIN 1 and 2 (with 120 Ω) to PIN 2 and 3 (without 120 Ω), as shown in the left and right figures.

• Step 4: Insert the upper control board back in and tighten the two fixing screws.

Appendix 4) Maintenance

1.) Maintenance Table

NO	Position	Method	Tool	Maintenance	
NO.	FOSICION	Wethou	1001	cycle	
1	AC input main breaker	Eyes check	/	2 months	
	Devices and connection points Main				
2	circuit devices (circuit breaker,	Sound and Eyes check	Torque wrench	2 months	
	AC contactor, DC contactor, DC fuse),				
	copper bar, power module connector				
3	AC SPD	Eyes check	/	3 months	
4	Charging plug	Eyes check	Brush	Daily	
		Eyes check	Blower, Screwdriver Soft		
5	Cooling Fan and Filter cotton		Brush	3 \sim 6 months	
			Vacuum Cleaner		
6	ESD	Eyes check	/	Daily	
7	Alarm information check	Eyes check	/	Daily	
8	Check all electrical connections	Sound and Eyes Check	Torque Wrench	12~24 months	

2.) Maintenance Operation

2.1) AC Input Main Breaker

1.1 AC input main breaker

- 1) When the circuit breaker is in the closing state, press the insulation test knob or trip test button to test the insulation function or trip function of the circuit breaker.
- 2) After the circuit breaker is released, the recovery method is as follows: first turn the circuit breaker to the opening state, and then turn it to the closing state.

630A shell frame

2.2) Devices and Connection Points

- Check the connection points (circle in the picture) between the main circuit components (circuit breaker, AC contactor, DC contactor, fuse) and copper bar or cable, the connection points between copper bar and copper bar, and the connector of power module for burns or serious discoloration. If any are seen, please check the torque and connection according to point 2) and replace the damaged cable.
- Check whether the screw fixing torque mark is normal. If there is any deviation, please retorque with a torque wrench and mark with a marker.

Types of connection points and similar structures				
Type A	Type B	Type C		

AC Input side of Power Cabinet

DC Output side of Power Cabinet

DC side of Charging Dispenser

2.3) AC SPD

• Check the status window of SPD. If the window color changes from green to red, it indicates that SPD has been damaged, and the manufacturer will need to be contacted for replacement.

2.4) Charging Plug

- Check whether the charging plug is cracked or damaged. If so, please contact the manufacturer.
- Check whether the DC + and terminals of the charging plug have obvious burning marks. If so, please contact the manufacturer for treatment.
- Use a brush to remove the dust on the surface of DC + and terminals.

2.5 Cooling Fan and Filter Cotton

- Check the dust screen on both sides of the heat exchanger for dust.
- Use the fan to clean the dust on the dustproof net.
- According to the site environment, the dust net shall be effectively removed at least once every three to six months, and it shall be replaced once a year at most.

- Remove the dust screen with a screwdriver, and use a soft brush, blower and vacuum cleaner to remove the dust effectively.
- Use vacuum cleaner and soft brush cloth to effectively remove the sundries and dust in the cabinet.

Located on the bottom portion of the rear door

2.6) ESD

 Check the emergency stop cover plate. If the cover plate is damaged, please contact the manufacturer for replacement.

2.7) Alarm Information

- Click "?" In the upper right corner of the screen to view the alarm information.
- If there is alarm information, it should be handled immediately. If it cannot be handled, contact the manufacturer to handle.

95 | Page

Appendix 5) Error Codes and Possible Solutions

tive Al	arm	Detailed Info	Param Set 💦 🐧	Aanual Ctrl Charge	Rec H
Index	Level	Alarm Name	Source	Begin Time	Status
1	MA	Server Comm Fail	Charger System	2000/01/01 20:00:48	Started
2	MA	One or more Rectifiers Alarm	Power Modules	2021/05/15 11:54:43	Started
3	CA	Mains Fail	CCU Group	2021/05/15 11:54:45	Started
4	CA	AC input Low Voltage	CCU Group	2021/05/15 11:54:45	Started
5	СА	System Not Available	Charger System	2021/05/15 11:54:47	Started

	Table: Charger Alarms						
NO.	Alarm ID	Alarm Name	Alarm Level	Description	Remark		
1	1	System Not Available	CA	The system is out of service and charge is not allowed. This usually comes after other critical alarm (e.g. EPO pressed)			
2	2	System Disabled	MA	The system is out of service and charge is not allowed. This happens after system is set to 'In-operative' by service guy or back-end.			
3	4	Server Comm Fail	MA	Whether the network is not accessible or the connection between server and charger is broken. If the charger is supposed to be used offline this alarm can be ignored.			

+ InCharge

4	5	All kWh Meter Not Installed	MA	All kWh meters are set to 'Not installed'. This means the system is not available. This alarm should not come with a normal charger unless you erase all the settings in controller Flash. The communication	
5	6	CCU Comm Fail	CA	between Upper controller and pilot controller failed. You need to check the RS-232-2 connection to eliminate it.	
6	7			This alarm appears after someone pressed the EPO. Please reset the EPO when no	
6	7	EPO is pressed	CA	emergency is existed to eliminate it.	
7	8	Door is opened	CA	The door should be closed.	
8	9	SPD alarm	CA	Check the SPD device and replace it.	
9	10	Mains Fail Alarm	CA	Check AC mains and the related contactor.	
10	11	Connector is disabled	MA	The specified connector is out of service and not allowed to charge. This happens after the connector is set to 'In-operative' by service guy or backend.	Connector A/B shall be specified
11	12	System over temp	МА	The temperature measurement from sensor is over the high limit point (default is 75 'C)	Note that this alarm does not stop/prohibit charge function
12	13	All Rectifier Failure	CA	This means system not available. Please check the work status of the power modules and make sure they work properly	
13	14	All Rectifier Comm Fail	СА	This means system not available. Please check the CAN wiring between power modules and pilot controller.	
				This means the specified connector will not be available. Please check the work status of the specified	Rectifier group (Dispenser A/B) hall be specified

14	15	Rectifiers Failure	CA	group of power modules and make sure they work properly
15	16	Rectifiers Comm Fail	СА	This means the specified connector will not be available. Please check the CAN wiring between power modules and pilot controller. Also, you may need check the dipswitches of the power module.
16	17	Insulation Comm Fail	СА	This means the specified connector will not be available. Check the RS-485 wiring between insulation detector and
17	18	Output Shorted	CA	This is from Rectifiers after detected the internal circuit shorted
18	19	Insulation Alarm	CA	This is from pilot controller after detected the insulation abnormal.
19	20	PLC ComFail Alarm	СА	This is from pilot controller when the PLC communication is lost.
20	21	Ground Fault	СА	This is from pilot controller after detected ground fault.
21	22	AC Fail Alarm(for AC only)	СА	This is from pilot controller after detected AC connector input fails (DI)
22	24	One or more Rectifiers Alarm	СА	This means one or more power modules in system has failure and you need to check/repair them.
23	25	IMEU2(Liquid Control) Comm Fail	CA	This means the controller of the liquid connector cooling system has lost communication (RS485) to pilot controller. (Note: this is for the liquid connector in split charger system only.) This means the controller of power controller of power controlling (inside the power cabinet) has lost communication (CAN) to charger main
				controller. (Note: this is

+ InCharge

24	26	IMEU2(Power Control) Comm Fail	CA	for the split charger system only.)	
25	27	Liquid Alarm-Pump Fail	СА	This means the pump has a failure in the liquid connector cooling system. (Note: this is for the liquid connector in split charger system only.)	
26	28	Liquid Alarm-High Temperature	MA	This means high temperature detected by liquid controller and the ongoing charging power will be derated. (Note: this is for the liquid connector in split charger system only.)	
27	29	Liquid Alarm-Over Temperature	СА	This means very-high-temperature detected by liquid controller and the ongoing charging will be derated or terminated. (Note: this is for the liquid connector in split charger system only.)	
28	30	Liquid Alarm-Temperature Sensor Fault	CA	This means the liquid controller detected that the temperature sensors have been all failed and the liquid connector may be disabled unless one of the sensors is recovered or repaired. (Note: this is for the liquid connector in split charger system only.)	
29	31	Liquid Alarm-Pump Pressure Abnormal	CA	This means the pump pressure has been detected as abnormal and the ongoing charging will be derated or terminated. (Note: this is for the liquid connector in split charger system only.)	
30	32	Liquid Alarm-Pump Oil Level Abnormal	CA	This means the pump oil level has been detected as abnormal and the ongoing charging will be derated or terminated. You need to check the oil. (Note: this is for the liquid connector in split charger system only.)	

31	33	AC input Over Voltage	CA	The AC mains voltage is higher than the max range which will cause the system run abnormally.	
32	34	AC input Low Voltage	СА	The AC mains voltage is lower than the min range which will cause the system run abnormally.	
33	36	CCU in Upgdate Process	OA	This means the pilot controller is in upgrading process and system is temporarily disabled.	
34	301	CR CommFail	СА	Card Reader communication is failed. Check the RS-232 wiring between card reader and upper controller.	
				The communication between upper controller and specified kWh meter is failed. This means the specified connector will	
35	401	kWhMeterCommFail	CA	forbidden to charge. Please check the RS- 485 wiring between the kWhMeter and upper controller.	
36	402	Sampled Invalid Current	CA	The measurement from the specified kWh meter is invalid. This usually happens with a reversed wiring for the current shunt.	
37	403	HeatExchangerCommFail	CA	The HeatExchanger is losing RS485 communication with Upper controller. This may be dangerous for the heatExchanger may have been	
	<u> </u>			There are two control boards, U1 and U2, inside the pilot controller, and their communication is abnormal. Please ensure that their control	
38	404	U2 Comm Break	CA	dial is correct and consistent, otherwise it may lead to charging failure	

39	405	Communication failure between CCU and PCU	СА	Communication failure between pilot controller and PCU, which may be due to abnormal CAN communication line connection or abnormal resistance value on the CAN bus (normally around 60 ohms)		
	1. CA - Critical alarm MA - Major alarm OA - Observative Alarm					

Stop Reason Classification Code		Description	Remark
Normal Stan	1	Normal Stop	Condition satisfied
Normai Stop	2	EV Request Stop	EV Request Stop
	201	Parameter configuration failed	
	202	Charging Enable timeout	
	203	Abnormal volt of outside bus	
	204	Unable lock charging connector	
	205	Insulation inspection abnormally	
	206	Insulation inspection timeout	
	207	EV Relay Pull-In timeout	
	208 Require	Require Curr Timeout	
	209	Remain time over stop	
	210	Ring fail alarm (reserved)	
Charger Error	211	Communication with EV failed	
	212	Plugged connector timeout	
	213	Pre-Charging fault	
	214	DoorOpen	
	215	EPO	
	216	SPD	
	217	AllRectFail	
	218	MainsFailAlm	
	219	AIRectCommFail	

	220	E_LockFail	
	221	ConnectorOverTemp	
	222	OutputShortCircuit	
	223	PWM Failure	
	224	Ground Fault Detected	
	250	CR Comm Fail	
	251	kWhMeterComm Fail	
	252	CCU Comm Fail	
	301	Battery overvoltage	
	302	Battery undervoltage	
	303	Battery current deviation error	
	304	High battery temperature	
	305	Battery voltage deviation error	
	306	Charger Connector Lock Fault	
EV Error	307	Vehicle shift position	
	308	Error Status Noticed by EV	
	309	PLC Low Level Comm Fail	
	310	PLC High Level Comm Fail	
	311	PLC Authentication Timeout	
	312	PLC ParamDiscovery Timeout	
	401	Local Stop	
	402	Server Stop	
	403	Network fault	
Osmaalad	404	Reboot	
Canceled	405	DeAuthorized	
	406	One-Click Stop	
	407	Hard Reset	
	408	Soft Reset	
Other	501	Other	
	2000	PCU refuse invalid cmd	
	2001	too high	
	2002	refuse request current too high	
	2003	has non-usable PM	

PCU	2004	has no power distribute	
	2005	port fault	
	2006	PCU receive gun ID abnormal	
	2051-2109	PCU currently has an alarm	

Appendix 6) Torque Table

Screw specification	Normal	Normal torque	Primary	Secondary
(applicable scenario)	torque	(in-lbs)	tightening tool	tightening tool
	(kgf.cm)	(
M4 (connection	12±10%	10.4±10%	Electric	torque
between DC contactor			screwdriver	screwdriver
and copper bar)				
M5 (connection	1820	15.6±10%	Electric	torque
between air			screwdriver	screwdriver
switch/lightning				
arrester and cable)				
M5 (connection	30±10%	26±10%	Electric	Cross
between copper bars			screwdriver	screwdriver or
and between cable and				torque
terminal)				screwdriver
M6 (connection	45±10%	39.1±10%	Electric	Cross
between copper bars			screwdriver	screwdriver,
and between cable				torque
terminals)				screwdriver or
				wrench
M6 (connection	45±10%	39.1±10%	Electric	Slot-type
between AC contactor			screwdriver	screwdriver and
and cable)				torque
				screwdriver
M6 (connection	45±10%	39.1±10%	Electric	Torque
between DC contactor			screwdriver	screwdriver or
and copper bar)				wrench
M8 (connection	110±10%	95.4±10%	Electric	Wrench, rocker
between copper bars			screwdriver	arm or torque
and between shunt and				wrench
copper bar)	1001100/	96 7 100/	Flootria	
	100±10%	86.7±10%	Electric	wrench, rocker
between DC contactor			screwuriver	arm or torque
And copper bar)	220+100/	101+100/	Floatria	Wrench reaker
hotween connection	220±10%	191110%	Electric	wrench, rocker
and botwoon chunt and			screwuriver	wronch
conner har)				WICILLI
M12 (connection	390+10%	338 5+10%	Flectric	Wrench rocker
hetween conner hars)	550±1070	550.5±10/0	screwdriver	arm or torque
between copper bars)			SCIEWUIIVEI	ann or torque

				wrench
Screw specification (applicable scenario)	Normal torque	Normal torque (in-lbs)	Primary tightening tool	Secondary tightening tool
	(kgf.cm)			
M4 (connection between DC contactor and copper bar)	12±10%	10.4±10%	Electric screwdriver	torque screwdriver